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MASS TRANSPORT TO A VIBRATING ELECTRODE
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The present work is concerned with the concentration field near an electrode located on a vibrating
plate. A mathematical model is proposed to describe the hydrodynamic behaviour of a streaming
electrolyte solution and of the resulting concentration distribution at the vibrating plate. The
results of numerical calculations were used to derive an empirical formula for the concentration
gradient as function of dimensionless parameters. The influence of the electrode width and of the
width of the vibrating plate on the value of the diffusion flux was also determined.

The title problem has a concrete physical motivation and interpretation; it originates
from the study of the diffusion transport of mass at vibrating electrodes1 '3•We shall
discuss its physical aspects in short.

The rate of mass transport plays a significant role in many physical and technical
processes. It is, in general, desirable that this rate be as high as possible and control-
lable. Increasing the diffusion transport of mass by vibration of plates with an
electroactive part of their surface has received attention in recent years. We shall,
however, not deal with the construction details of vibrating plate electrodes. The
aim of the present work was the derivation of a mathematical model describing the
physical processes at a vibrating plate electrode.

THEORETICAL

Mathematical Model

We shall consider a vibrating plate in the y—z plane of a Cartesian coordinate system.
The plate is unlimited in both directions of the y axis, which is also its symmetry
axis. The plate width is denoted as d and the width of the electroactive region is
a <d. The plate is assumed to vibrate along the z axis (Fig. 1); the coordinate
system is fixed with respect to the plate, which is immersed in a liquid of a so large
volume that the boundary effects can be neglected. Finally, we assume that the
streaming velocity of the liquid at a large distance from the plate is given as v2
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= rca sin (cot), where r denotes the amplitude and co the angular frequency of har-
monic vibrations.

The mathematical description of the hydrodynamic behaviour is based on the
boundary layer theory4; the convection-diffusion system is described by the fol-
lowing system of partial differential equations:

v/t + Th/ + tTh/ô = va2v/ax2 (1)

av/ox + = 0 (2)

ic/3t + vc/ax + vc/z = D(2c/ôx2 + a2c/3z2), (3)

where v and v are the x- and z-components of the velocity, v denotes dynamic
viscosity, c solution concentration at the point considered, and D diffusion coefficient
of the transported solute. The boundary conditions are (Since the problem is sym-
metrical, x 0)

a) for the x component of velocity

v(O, z, t) 0 for z e R, t e <0, 21r/co>

limv(x, z, t) = 0 for z e R, t (0, 21r/co> (4)

urn v(x, z, t) = 0 for x � 0, t (0, 27t/co>Z ±

v(x, z, 0) = v(x, z, 2ir1fw)

b) for the z component of velocity

v(O, z, t) 0 for zi � d/2, t e <0, 21r/co>

v/0x(O, z, t) = 0 for JzJ > d/2, t (0, 21r/co> (5)
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The vibrating plate with the coordinate
system V
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limv(x, z, t) = rco sin (cot) for z e R, t e <0, 2it/co>

urn v(x, z, t) = rco sin (cot) for x 0, t e <0, 21r/w>
z-+ ±

z, 0) = z, 2ir/co),

c) for the concentration

c(O, z, t) = 0 for zf � a/2, t e (0, 27t/co>

ac/ax(O, z, t) 0 for JzJ > a/2, t e (0, 21t/co> (6)

limc(x, z, t) = c0 for z e R, I e (0, 2it/co>

z, t) c0 for x � 0, t <0, 27r/w>

c(x, z, 0) = c(x, z, 2it/co),

where c0 denotes concentration of the diffusing substance at a large distance from the
plate.

The mathematical problem defined by Eqs (1) —(6) can be considerably simplified.
The number of unknown functions (vi, v, c) can be lowered by introducing the stream
function i/' as

= = —ai/,/a. (7)

Thus, the continuity equation (2) is automatically satisfied and Eqs (1) and (3) take
the form

—ô2i/i/ôxôt — ?i/,/az . 2i/i/ax2 -F oifr/ax . a2i/i/3xz = —vä3ifr/ôx3 , (8)

ôc/ôt + a,1i/az. 3c/.3x — i/i/x . 3c/z = D(ô2c/3x2 + a2c/5z2). (9)

It is convenient to introduce the dimensionless variables

X = x/r, Z z/r, T = cot/2it, C c/co, W = ,ji/v (10)

and the dimensionless parameters

Sc v/D , B = wr2/2itv . (ii)

Thus, the functions i/i and c of the variables x, z, and t are replaced by the functions
J' and C of the variables X, Z, and T
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çfi(x, z, t) = cli (rX rZ, T)
= t'(X, Z, T)

c(x, z, t) c (rX, rZ, T C(X, Z, T).
C0 C0 \ U) /

The original integration domain <0, oo) x (—, co) in the x—z plane is transformed
to a finite one, <0, X0> x (—.1, 1), where X0 > 0, by substituting Z1 = (2/ic) arctg Z
and by a suitable definition of the range of the variable X. The choice of the quantity
X0 follows from physical analysis of the problem and depends on the parameters Sc
and B. Thus, we arrive at the system of equations for the functions

i'1(x, Z1, T) = P(X, tg (irZ1/2), T), C1(X, Z1, T) C(X, tg (itZ1/2), T)

In further text, the subscript I will be omitted for simplicity. Equations (8) and (9)
acquire the form

a3w 2 itZaI'a2w 2 2itZ31' a2v' ____— — — cos2——- + — cos — ____ = , (12)ax3 2 az ax2 it 2 ax axaz ÔXT

j32J 4 3itZf itZa2C . irZi3C\
—+-—cos —(cos------—-- —itsin------------l+
ax2 2\ 2 az2 2Z)

2 2 itZ /C a'i' aC aw\ 0C+ — Sc cos I — — —- BSc —. (13)it 2 azax aXaZ) aT

The boundary conditions for the function W must be in accord with Eqs (4), (5),
and (7). According to Eqs (7) and (Jo), the dimensionless stream function 'I' is defined
except for an additive quantity which depends, in general, on the variable T. The
function W can be chosen so that W(0, 0, T) = 0. Then

v'(o, Z, T) = 0 for JzJ � (2/it) arctg (d/2r), Te <0, 1>

!! (0, Z, T) = 0 for JZI � (2/it) arctg (d/2r), Te <0, 1> (14)

f'(O, Z, T) = 0 for (2/it) arctg (d/2r) < Izi � 1, Te <0, 1>

(0, Z, T) 0 for (2/it) arctg (d/2r) < � 1, Te <0, 1>,

(x0, Z, T) —2itB sin (2itT) for 1ZI � 1, Te <0, 1> (ISa)
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i'(X, ±1, T) —2irBX sin (2tT) for 0 � X � X0, Te <0, 1> (15b)

¶P(X, Z, 0) = W(X, Z, 1) . (15c)

The boundary conditions for the dimensionless concentration are

C(0, Z, T) 0 for Z � (2/it) arctg (a/2r), Te (0,1> (16a)

(0, Z, T) = 0 for (2/it) arctg (a/2r) < JZ � 1, Te <0, 1> (16b)

C(X0, Z, T) = 1 for JzJ � 1, Te <0, 1> (16c)

C(X,±1,T)=1 for (16d)

C(X, Z, 0) = C(X, Z, 1). (16e)
Numerical Solution

Our task is to calculate the mass transfer by diffusion to the vibrating electrode after
attainment of a dynamic equilibrium. The diffusion flux is given by the concentration
gradient at the electrode surface. To this purpose, the concentration field at the
vibrating electrode must be known, hence the boundary value problem (12)—(16)
must be solved. This was done by the finite difference method.

With respect to the limited possibilities of the available computers, the following
method was used for the numerical solution. The periodicity conditions (15c) and
(16e) were replaced by the initial conditions

!t'(X, Z, 0) = 0 for 0 � X � X0, JZJ � 1 (17a)

C(0, Z, 0) = 0 for ZI � (2/it) arctg (a/2r) (17b)

C(0, Z, 0) = 1 for (2/it) arctg (a/2r) < ZJ � 1 (1 7c)

C(X, Z, 0) = 1 for 0 <X � X0, Z � 1. (17d)

The problem thus modified was solved with T as the parameter, beginning from
T 0 and ending at T = Tk, when the functions I' and C varied during one period
by less than the allowed error. The accuracy was tested both for the stream function
!P and for the concentration C. It turned out that the stream function is already after
two periods constant. Therefore, in further subroutines, only the concentration C
was tested, and this in the first three columns of the chosen grid, adjacent to the
"surface" column X = 0, since the values of grad C were approximated as

(grad C) = (— llC + l8C — 9C2 + 2C3)/(6h) + &(h), (18)

where h denotes the step of the grid along the X axis.
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It is known that diffusion processes are slow. Therefore, after calculations during
a number of periods (40—50), the essential functions, 'I' and C, were extrapolated
for T —f oo, the values obtained were used as new input data and further changes
of I' and C were followed. When the changes were smaller than the allowed error,
the calculations were stopped. In the opposite case, the described cycle was repeated.

The numerical calculations started at T = 0 and continued with a time step equal
to hT. When passing from the k-th time level corresponding to the time T kh
to the (k + 1)-st time level corresponding to T = (k + 1) h, we used the finite-
-difference method with the implicit difference scheme in the integration domain
(0, X0> x <— 1, 1> in the X—Z plane. In this way, Eqs. (12) for the stream function
was solved first. Since it is non-linear, the corresponding system of difference equa-
tions was solved by the Newton method. In calculating values at the (k + 1)-st time
level, values at the k-th time level were used as initial approximations. After ob-
taining the stream function values at the grid points with the required accuracy,
which was tested, the W value were introduced into the diffusion equation (13),
which was solved in an analogous manner. Since this equation is linear, the cor-
responding system of difference equations was solved by using the alorithm described
earlier5.

RESULTS AND DISCUSSION

After solving Eq. (12), the solution of Eq. (13) yielded the concentration field and
gradients at the vibrating electrode. Physical reasons allow us to expect that the
second and third terms on the left side of Eq. (13) have a much lesser influence on
the concentration C; for reasons of symmetry, f3C/i3Z(X, 0, T) = 0 in the second
term, and hence negligible for Z values close to zero. The term 2C/aZ2(X, Z, T)
in the neighbourhood of Z = 0 plays the greater role the narrower is the active zone.
Accordingly, the term (3C/ÔZ) 3W/8X in the third term can be neglected, whereas
the value of (3C/3X) i3P/ôZ, though small, is not negligible.

In order to substantiate these considerations numerically, it is convenient to
replace the variable X by a new one, U:

U = \/(B. Sc) X.

Equation (13) then takes the form

o2c 4 irZ / irZ oi2C . irZ C\
B Sc + cos3 I cos - — ir sin — — 1 +

LJ2 2\ 2öZ2 2Z)
2 2 irZ /3C w 3C V'\+ Sc j(B. Sc) — cos — — — — — — = B Sc —
it 2 \Z0U 3UZJ 3T
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and after dividing with B. Sc

2( 1 4 itZ / itZ (32C . icZ ÔC\- + — cos — I cos — — it sin — — I +
i3U2 B. Sc it2 2 \ 2 Z2 2 3ZJ

IfSc\ 2 2 irZ f8C ?t' 3C 3t'\ 0C+ —1-cos—(—————)=—. (19)\j\BJlt 2 \3ZÔU oUaZJ ÔT

If the second and third terms on the left-hand side of Eq. (19) are neglected, then

(20)au2 aT

Here, the parameters B and Sc do not occur, and the solution is C =C(U, Z, T),
whence

(0, Z, T) = k1(Z, T)

and

grad C(0, Z, T) = (0, Z, T) \/(B. Sc) = k1(Z, T) J(B. Sc) (21)

With respect to Eq. (19), it can be shown by a thorough analysis that

(0, z, T) k1(Z, T) +
k2(Z,T) + k3(Z, T)

and hence

grad C(O, Z, T) = k1(Z, T) J(B. Sc) + k2(Z, T) + k3(Z, T) Sc. (22)
,/(B. Sc)

The results of numerical solution show that the dependence on T is in the dynamic
equilibrium not marked. Therefore, it is possible to replace the time average of the
concentration gradient during one period by the value of the gradient at the end of
the period. Since the concentration gradient at the centre of the active area (at the
point Z = 0) is important, the following semiempirical equation can be proposed
for the mean value of grad C by analogy to Eq. (22):

grad C = K1 J(B. Sc) + J(1(21 + K3 Sc, (23)
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TABLE I
Dependence of grad C on the width of vibrating plate (Sc = 1 000)

B= 100 B== 1000

A E gradC A E gradC

1 2 3&3005 1 2 127661

1 4 38 3024 1 4 127683

15 2 374567 15 2 123867

15 4 373705 15 4 123498

TABLE II

Dependence of grad C on the electrode width (Sc 1 000)

B=100 B==1000

A E gradC A E gradC

05 2 453584 05 2 154100
1 2 383005 1 2 127661
F5 4 373705 15 4 123498
2 4 371653 2 4 l22448
5 15 338117 5 15 106659

10 30 338117 10 30 106659

TABLE III

Values of grad C as function of parameters B and Sc for A = 10, E = 30

B Sc J(B.Sc) grad C

io3 io 106•51

102 iø i03 9983
10 iø iø 9909
102 102 102 11238
10 io3 102 10661

i 104 102 9935
10 10 10 09877
01 1O3 10 10679
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where the coefficients K1, K2 and K3 depend on the width of the active area, a, and
on the width of the vibrating plate, d, as can be seen from Tables I and II. We denote,
for convenience,

A—-, E=--. (24)2r 2r

It follows from Table I that the concentration gradient is practically independent
of E at constant A, which is in accord with expectation. Changes of the width of the
vibrating plate, d, i.e. of the parameter E influence only the boundary conditions for
the streaming velocity of the electrolyte (Eqs (14)), and this has a negligible effect
on the concentration field in the vicinity of the electrode. It can be expected for
physical reasons that the dependence of grad C on the electrode width will be much
stronger than on the width of the vibrating plate, since the quantity a (and hence A)
is involved in the boundary conditions (16a, b). This is substantiated by the reults
in Table II, according to which the values of the concentration gradient decrease
with increasing ratio of a/r, hence the influence of the boundaries diminishes. The
last two couples of the mentioned values suggest that the boundary effect becomes
negligible for sufficiently high values of a/r. Therefore, further calculations were
made for A 10 and E = 30.

The results of calculations are given in Table III, from which the coefficients K1,
K2, and K3 in Eq. (23) were determined by the least squares method. Thus,

grad C = 0104 \/(B. Sc) +
01

- — 485. 105Sc. (25)
/(B. Sc)

Here, the first term on the right-hand side is dominant, the second is negligible in
common cases, i.e. for B e <10, 100> and Sc e <100, 10 000), and the last one comes
into play only at very large values of Sc. Therefore, it can be concluded that the
concentration gradient, grad C, is under suitably chosen and often encountered
physical conditions directly proportional to J(B. Sc).

SYMBOLS

a width of active area
A dimensionless parameter
B dimensionless parameter
c concentration

concentration in the bulk of solution
C(X, Z, T) dimensionless concentration
C1(X, Z1, T) dimensionless concentration
C, value of dimensionless concentration at the grid point
d width of vibrating plate

Collect. Czech. Chem. Commun. (Vol. 56) (1991)



Mass Transport 305

D diffusion coefficient
F dimensionless parameter
"x 1i7, 'T grid steps
k(Z, T) empirical coefficient, i= 1,2, 3

r amplitude of harmonic vibrations
Sc Schmidt number

time

T dimensionless time
U dimensionless coordinate
v, v, v velocity components
x, y, Cartesian coordinates
X, Z dimensionless coordinates
X0 limit of the integration domain
Z1 auxiliary space coordinate

dynamic viscosity of solution
ii stream function
I'(X, Z, T) dimensionless stream function
'P1 (X, Z1, T) dimensionless stream function
(1) angular frequency of harmonic vibrations
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